If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+57x-42=0
a = 9; b = 57; c = -42;
Δ = b2-4ac
Δ = 572-4·9·(-42)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-69}{2*9}=\frac{-126}{18} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+69}{2*9}=\frac{12}{18} =2/3 $
| 9x^2+57-42=0 | | (x^2)+3=17 | | ⅜q=−½ | | 1/3(2x-9)=6 | | 3(x+2)-2(x+1)=0 | | -18=3x/7 | | 16m+7=16m+6m | | -4.7=3y | | x=90-8x-20 | | 3(y+5)=2y-4+9 | | Y=-7x2+463x-3166 | | 3/2x+1/3=105/6 | | X+y+2=57 | | 1(z+2)=5 | | 12-4x-2(1x-1)=4(1x+4) | | 4x-6-x+12=18 | | 5k+3/4=10 | | -6-17x=56 | | 373=n/19+ 364 | | 2d−2=2 | | (3x-4)+(2x+1)=0 | | 5k^2+3k=1.4 | | -7x-2=-40 | | N=123+8(n-1) | | 643=19+24k | | 3x=36-4x-8 | | F(4)=3x4-12 | | x+12=-5-x | | 4(1/3)b+b=6b-10.4 | | 16n^2+40n+25=4 | | 3m-4+6m+7=12 | | 6+3x=56+x |